Ronaldo Cristiano Prati

I'm a Professor in Computer Science at Universidade Federal do ABC currently working on machine learning and data mining applications for various domains like smart agriculture, quantum chemistry, and music analysis. My research focuses on developing novel machine learning methods and techniques, particularly for handling imbalanced datasets, multi-label classification, and data streams. I have extensive experience working with classification algorithms, feature selection methods, and ensemble learning approaches. I've contributed significantly to the field through my work on ROC analysis, rule learning, and methods for dealing with class imbalance problems. I've collaborated with researchers worldwide on applications ranging from IoT-based smart irrigation systems to quantum chemistry data analysis. More recently, my research has expanded into applied machine learning for agricultural technology, where I work on developing intelligent irrigation systems and soil moisture prediction models. I'm also interested in applications of machine learning to music analysis, particularly in characterizing musical timbre through spectral analysis. Additionally, I continue to work on fundamental machine learning challenges like handling imbalanced data streams and developing novel classification approaches.

I believe in combining theoretical advances with practical applications to create meaningful impact across different domains. My work aims to bridge the gap between machine learning theory and real-world applications while developing robust and interpretable models.

Publications

Comparing Modern and Traditional Modeling Methods for Predicting Soil Moisture in IoT-based Irrigation Systems

Gilliard Custódio, R. Prati

Smart Agricultural Technology 2024

Effect of Flattened Structures of Molecules and Materials on Machine Learning Model Training

Luis Cesar de Azevedo, R. Prati

Journal of Chemical Information and Modeling 2023

Data-driven water need estimation for IoT-based smart irrigation: A survey

R. Togneri, R. Prati, H. Nagano, C. Kamienski

Expert systems with applications 2023

Similarity of Musical Timbres Using FFT-Acoustic Descriptor Analysis and Machine Learning

Yubiry Gonzalez, R. Prati

Engineer 2023

IoTracker: A probabilistic event tracking approach for data-intensive IoT Smart Applications

G. Biondi, R. Prati, Fabrizio F. Borelli, Dener Ottolini, Nelson Gonçalves de Oliveira, C. Kamienski

Internet of Things 2022

Soil moisture forecast for smart irrigation: The primetime for machine learning

R. Togneri, Diego Felipe dos Santos, Glauber Camponogara, H. Nagano, Gilliard Custódio, R. Prati, S. Fernandes, C. Kamienski

Expert systems with applications 2022

Data reduction based on machine learning algorithms for fog computing in IoT smart agriculture

Franklin M. Ribeiro Junior, Reinaldo A. C. Bianchi, R. Prati, Kari Kolehmainen, J. Soininen, C. Kamienski

Biosystems Engineering 2022

Naive Importance Weighting for Data Stream with Intermediate Latency

Pedro Henrique Parreira, R. Prati

IEEE Symposium Series on Computational Intelligence 2021

IrrigaSim: An Irrigation Simulation, Processing, and Animation Environment

R. Prati, Fabrizio F. Borelli, Ivan D. Zyrianoff, Dener Silva, R. Togneri, C. Kamienski

2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) 2021

Applications of FFT for timbral characterization in woodwind instruments

Applications of FFT for timbral characterization in woodwind instruments

Yubiry Gonzalez, R. Prati

Anais do XVIII Simpósio Brasileiro de Computação Musical (SBCM 2021) 2021

Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition

Luis Cesar de Azevedo, Gabriel A. Pinheiro, M. G. Quiles, J. D. Silva, R. Prati

Journal of Chemical Information and Modeling 2021

Multiple instance classification: Bag noise filtering for negative instance noise cleaning

Multiple instance classification: Bag noise filtering for negative instance noise cleaning

Julián Luengo, Dánel Sánchez Tarragó, R. Prati, F. Herrera

Information Sciences 2021

Correlation-Based Framework for Extraction of Insights from Quantum Chemistry Databases: Applications for Nanoclusters

J. Mucelini, M. G. Quiles, R. Prati, J. D. Silva

Journal of Chemical Information and Modeling 2021

DTO-SMOTE: Delaunay Tessellation Oversampling for Imbalanced Data Sets

DTO-SMOTE: Delaunay Tessellation Oversampling for Imbalanced Data Sets

Alexandre Miguel de Carvalho, R. Prati

Inf. 2020

Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset.

Gabriel A. Pinheiro, J. Mucelini, M. Soares, R. Prati, J. L. D. Da Silva, M. G. Quiles

Journal of Physical Chemistry A 2020

A Nearest Neighbors based Data Filter for Fog Computing in IoT Smart Agriculture

A Nearest Neighbors based Data Filter for Fog Computing in IoT Smart Agriculture

F. M. Ribeiro, R. Prati, Reinaldo A. C. Bianchi, C. Kamienski

2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) 2020

Water spray detection for smart irrigation systems with Mask R-CNN and UAV footage

Water spray detection for smart irrigation systems with Mask R-CNN and UAV footage

Caio K. G. Albuquerque, Sergio Polimante, A. Torre-Neto, R. Prati

2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) 2020

Irony detection in Twitter with imbalanced class distributions

Irony detection in Twitter with imbalanced class distributions

D. I. H. Farías, R. Prati, F. Herrera, Paolo Rosso

Journal of Intelligent & Fuzzy Systems 2020

Advancing IoT-Based Smart Irrigation

Advancing IoT-Based Smart Irrigation

R. Togneri, C. Kamienski, R. Dantas, R. Prati, A. Toscano, J. Soininen, T. S. Cinotti

IEEE Internet of Things Magazine 2019

Ab initio insights into the structural, energetic, electronic, and stability properties of mixed CenZr15-nO30 nanoclusters.

Ab initio insights into the structural, energetic, electronic, and stability properties of mixed CenZr15-nO30 nanoclusters.

Priscilla Felício-Sousa, J. Mucelini, Larissa Zibordi-Besse, Karla F. Andriani, Y. Seminovski, R. Prati, J. L. D. Da Silva

Physical Chemistry, Chemical Physics - PCCP 2019

End-to-End Security in the IoT Computing Continuum: Perspectives in the SWAMP Project

End-to-End Security in the IoT Computing Continuum: Perspectives in the SWAMP Project

J. H. Kleinschmidt, C. Kamienski, R. Prati, Kari Kolehmainen, Cristiano Aguzzi

Latin-American Symposium on Dependable Computing 2019

Characterization of the sonority associated to woodwinds instruments through spectral analysis

Yubiry Gonzalez, R. Prati

Anais do Simpósio Brasileiro de Computação Musical (SBCM 2019) 2019

Predicting the ideological orientation during the Spanish 24M elections in Twitter using machine learning

R. Prati, E. Said-Hung

Ai & Society 2019

Designing an Open IoT Ecosystem

C. Kamienski, J. Soininen, R. Prati, J. H. Kleinschmidt

Learning from Imbalanced Data Sets

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Cambridge International Law Journal 2018

Emerging topics and challenges of learning from noisy data in nonstandard classification: a survey beyond binary class noise

R. Prati, Julián Luengo, F. Herrera

Knowledge and Information Systems 2018

Improving kNN classification under Unbalanced Data. A New Geometric Oversampling Approach

Improving kNN classification under Unbalanced Data. A New Geometric Oversampling Approach

Alexandre Miguel de Carvalho, R. Prati

IEEE International Joint Conference on Neural Network 2018

A First Study on the Use of Noise Filtering to Clean the Bags in Multi-Instance Classification

A First Study on the Use of Noise Filtering to Clean the Bags in Multi-Instance Classification

Julián Luengo, Dánel Sánchez Tarragó, R. Prati, F. Herrera

International Conference on Learning and Optimization Algorithms 2018

PolyWaTT: A polynomial water travel time estimator based on Derivative Dynamic Time Warping and Perceptually Important Points

Yuri Navarro Claure, E. Matsubara, C. Padovani, R. Prati

Computational Geosciences 2018

Predicting the ideological orientation during the Spanish 24M elections in Twitter using machine learning

R. Prati, E. Said-Hung

Ai & Society 2017

A first approach towards a fuzzy decision tree for multilabel classification

A first approach towards a fuzzy decision tree for multilabel classification

R. Prati, F. Charte, F. Herrera

IEEE International Conference on Fuzzy Systems 2017

Fuzzy rule classifiers for multi-label classification

Fuzzy rule classifiers for multi-label classification

R. Prati

IEEE International Conference on Fuzzy Systems 2015

Class imbalance revisited: a new experimental setup to assess the performance of treatment methods

R. Prati, Gustavo E. A. P. A. Batista, Diego Furtado Silva

Knowledge and Information Systems 2015

How Does Irony Affect Sentiment Analysis Tools?

Leila Weitzel, Raul A. Freire, P. Quaresma, Teresa Gonçalves, R. Prati

Portuguese Conference on Artificial Intelligence 2015

Setting Parameters for Support Vector Machines using Transfer Learning

G. Biondi, R. Prati

Journal of Intelligent and Robotic Systems 2015

Mining DEOPS Records: Big Data's Insights into Dictatorship

Mining DEOPS Records: Big Data's Insights into Dictatorship

D. Navarro, R. Prati

IEEE International Conference on e-Science 2014

Class imbalance revisited: a new experimental setup to assess the performance of treatment methods

R. Prati, Gustavo E. A. P. A. Batista, Diego Furtado Silva

Knowledge and Information Systems 2014

Complex Network Measures for Data Set Characterization

Complex Network Measures for Data Set Characterization

G. Morais, R. Prati

Brazilian Conference on Intelligent Systems 2013

Extending features for multilabel classification with swarm biclustering

Extending features for multilabel classification with swarm biclustering

R. Prati, F. O. França

IEEE Congress on Evolutionary Computation 2013

An Experimental Design to Evaluate Class Imbalance Treatment Methods

An Experimental Design to Evaluate Class Imbalance Treatment Methods

Gustavo E. A. P. A. Batista, Diego Furtado Silva, R. Prati

International Conference on Machine Learning and Applications 2012

A Complexity-Invariant Measure Based on Fractal Dimension for Time Series Classification

R. Prati, Gustavo E. A. P. A. Batista

International Journal of Natural Computing Research 2012

Combining feature ranking algorithms through rank aggregation

Combining feature ranking algorithms through rank aggregation

R. Prati

IEEE International Joint Conference on Neural Network 2012

A Survey on Graphical Methods for Classification Predictive Performance Evaluation

A Survey on Graphical Methods for Classification Predictive Performance Evaluation

R. Prati, Gustavo E. A. P. A. Batista, M. C. Monard

IEEE Transactions on Knowledge and Data Engineering 2011

Improvement on the Porter's Stemming Algorithm for Portuguese

Melo Soares, R. Prati, M. C. Monard

IEEE Latin America Transactions 2009

Missing Value Imputation Using a Semi-supervised Rank Aggregation Approach

E. Matsubara, R. Prati, Gustavo E. A. P. A. Batista, M. C. Monard

Brazilian Symposium on Artificial Intelligence 2008

Evaluating Ranking Composition Methods for Multi-Objective Optimization of Knowledge Rules

Rafael Giusti, Gustavo E. A. P. A. Batista, R. Prati

2008 Eighth International Conference on Hybrid Intelligent Systems 2008

Evolving Sets of Symbolic Classifiers into a Single Symbolic Classifier Using Genetic Algorithms

Evolving Sets of Symbolic Classifiers into a Single Symbolic Classifier Using Genetic Algorithms

F. Bernardini, R. Prati, M. C. Monard

2008 Eighth International Conference on Hybrid Intelligent Systems 2008

A Study with Class Imbalance and Random Sampling for a Decision Tree Learning System

R. Prati, Gustavo E. A. P. A. Batista, M. C. Monard

IFIP AI 2008

Evaluating Classifiers Using ROC Curves

R. Prati, Gustavo E. A. P. A. Batista, M. C. Monard

IEEE Latin America Transactions 2008

Potential Distribution Modelling Using Machine Learning

Ana Carolina Lorena, M. F. Siqueira, R. Giovanni, A. Carvalho, R. Prati

International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems 2008

On the Class Distribution Labelling Step Sensitivity of CO-TRAINING

E. Matsubara, M. C. Monard, R. Prati

IFIP AI 2006

Constructing ensembles of symbolic classifiers

Constructing ensembles of symbolic classifiers

F. Bernardini, M. C. Monard, R. Prati

International Conference on Health Information Science 2005

Balancing Strategies and Class Overlapping

Gustavo E. A. P. A. Batista, R. Prati, M. C. Monard

International Symposium on Intelligent Data Analysis 2005

ROCCER: An Algorithm for Rule Learning Based on ROC Analysis

ROCCER: An Algorithm for Rule Learning Based on ROC Analysis

R. Prati, Peter A. Flach

International Joint Conference on Artificial Intelligence 2005

Learning with Class Skews and Small Disjuncts

R. Prati, Gustavo E. A. P. A. Batista, M. C. Monard

Brazilian Symposium on Artificial Intelligence 2004

A study of the behavior of several methods for balancing machine learning training data

A study of the behavior of several methods for balancing machine learning training data

Gustavo E. A. P. A. Batista, R. Prati, M. C. Monard

SKDD 2004

Class Imbalances versus Class Overlapping: An Analysis of a Learning System Behavior

R. Prati, Gustavo E. A. P. A. Batista, M. C. Monard

Mexican International Conference on Artificial Intelligence 2004

Idiopathic hydrocele and absent testicular diastolic flow

P. J. Nye, R. Prati

Journal of Clinical Ultrasound 1997

A dvAncing i o T-B Ased s mArT i rrigATion

A dvAncing i o T-B Ased s mArT i rrigATion

Rodrigo Kamienski, Carlos Dantas, Ramide Prati, Ronaldo Toscano, Attilio Soininen, Juha-Pekka Cinotti, T. Salmon, R. Togneri, C. Kamienski, R. Dantas, R. Prati, A. Toscano, J. Soininen, T. S. Cinotti, AdvAncing ioT-BAsed, Smart Irrigation

Imbalanced Classification for Big Data

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Data Intrinsic Characteristics

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Foundations on Imbalanced Classification

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Cost-Sensitive Learning

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Learning from Imbalanced Data Streams

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Data Level Preprocessing Methods

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Non-classical Imbalanced Classification Problems

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Software and Libraries for Imbalanced Classification

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Introduction to KDD and Data Science

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Imbalanced Classification with Multiple Classes

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Algorithm-Level Approaches

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

Dimensionality Reduction for Imbalanced Learning

Alberto Fernández, S. García, M. Galar, R. Prati, B. Krawczyk, F. Herrera

The Comprehension of Figurative Language: What Is the Influence of Irony and Sarcasm on NLP Techniques?

Leila Weitzel, R. Prati, R. Aguiar

Sentiment Analysis and Ontology Engineering 2016

An Analysis of Novelty Dynamics in News Media Coverage

An Analysis of Novelty Dynamics in News Media Coverage

R. Prati, Walter Teixeira Lima Junior

NewsIR@ECIR 2016

QROC: A Variation of ROC Space to Analyze Item Set Costs/Benefits in Association Rules

QROC: A Variation of ROC Space to Analyze Item Set Costs/Benefits in Association Rules

R. Prati

Data mining with imbalanced class distributions: concepts and methods

Data mining with imbalanced class distributions: concepts and methods

R. Prati, Gustavo E. A. P. A. Batista, M. C. Monard

Indian International Conference on Artificial Intelligence 2009

Exploring Unclassified Texts Using Multiview Semisupervised Learning

E. Matsubara, M. C. Monard, R. Prati

A hybrid wrapper / filter approach for feature subset selection

A hybrid wrapper / filter approach for feature subset selection

R. Prati, Gustavo E. A. P. A. Batista, M. C. Monard

A hybrid wrapper/lter approach for feature subset selection

R. Prati, Gustavo E. A. P. A. Batista, M. C. Monard

New approaches in machine learning for rule generation, class imbalance and rankings

R. Prati

´ AAAAAAAAAAAAAAAAAAAAAAAA ´ AAAAAAAAAAAAAAAAAAAAAAAA ARTICULO

´ AAAAAAAAAAAAAAAAAAAAAAAA ´ AAAAAAAAAAAAAAAAAAAAAAAA ARTICULO

H. D. Lee, M. C. Monard, Richardson Floriani Voltolini, R. Prati, Wu Feng Chung

On t h e Class Dis t r ibut ion Labell ing Step Sensitivity of CO-TRAINING

On t h e Class Dis t r ibut ion Labell ing Step Sensitivity of CO-TRAINING

M. C. Monard, R. Prati

ROCCER: A ROC convex hull rule learning algorithm

ROCCER: A ROC convex hull rule learning algorithm

R. Prati, Peter A. Flach

An Integrated Environment for Data Mining

An Integrated Environment for Data Mining

R. Prati, Marcos Roberto Geromini, M. C. Monard

Looking for exceptions on knowledge rules induced from HIV cleavage data set

Looking for exceptions on knowledge rules induced from HIV cleavage data set

R. Prati, M. C. Monard, A. Carvalho

A method for refining knowledge rules using exceptions

A method for refining knowledge rules using exceptions

R. Prati, M. C. Monard, A. Carvalho

´ Aaaaaaaaaaaaaaaaaaaaaaaa´aaaaaaaaaaaaaaaaaaaaaaaa Art´iculo a Comparison of Methods for Rule Subset Selection Applied to Associative Classification

´ Aaaaaaaaaaaaaaaaaaaaaaaa´aaaaaaaaaaaaaaaaaaaaaaaa Art´iculo a Comparison of Methods for Rule Subset Selection Applied to Associative Classification

Gustavo E. A. P. A. Batista, Claudia Regina Milaré, R. Prati, M. C. Monard

A Framework to Integrate Data Mining Components

A Framework to Integrate Data Mining Components

R. Prati, Marcos Roberto Geromini, M. C. Monard

Adversarial effects of intermediate latency in Active Learning on Data Streams

Adversarial effects of intermediate latency in Active Learning on Data Streams

Pedro Henrique Parreira, R. Prati